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Abstract

In what circumstances is allowing resale more efficient than providing re-

funds? I study common aftermarket policies in perishable goods markets with

demand uncertainty. Using primary and resale market data on college football

ticket sales, I estimate a structural model comparing resale, which has flexible

prices but incurs frictions, to a partial refund scheme, which is centralized but

has rigid prices. In the model, consumers anticipate shocks when making ini-

tial purchases, then engage in resale after shocks are realized. Because of resale

frictions, refunds are more efficient on average. However, flexible prices make

resale more efficient after large aggregate shocks.
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1 Introduction

Economists often argue that resale is valuable because it reallocates goods to

consumers with high values. For instance, a consumer might buy a concert

ticket, learn she cannot attend, and resell to someone who can. But other

methods of reallocating—like refunds—could reach the same result. With re-

funds, the consumer could return the ticket to the box office, then the primary

market seller could sell it to someone else. In fact, many primary sellers, like

airlines and hotels, offer partial refunds instead of allowing resale. Is resale

better than alternatives like refunds?

In this article, the relative performance of resale and refunds depends on two

main forces: aggregate demand uncertainty and resale frictions. The advantage

of refunds is that sales are conveniently centralized in the primary market,

but the cost is that all sales are made at the primary market seller’s prices.

If primary market prices are rigid, they will be suboptimal after aggregate

demand shocks. In contrast, the advantage of resale is that prices in the resale

market are flexible and adjust after shocks, but the cost is that decentralized

resale markets incur frictions such as the hassle of browsing several markets.

In markets with aggregate demand shocks and resale frictions, the optimal

aftermarket design is ambiguous.

I carry out an empirical study to quantify the performance of resale and

refunds and determine which design is best. Specifically, I develop and estimate

a structural model of the market for college football tickets, which features rigid

primary market prices, substantial aggregate demand uncertainty, and resale

frictions. I use the model to conduct a counterfactual experiment in which

resale is prohibited and the primary market seller offers a partial refund. The

model predicts that partial refunds raise total welfare by 0.7% compared to

resale, leave consumer welfare unchanged, and perform worse than resale when

there are large aggregate shocks.

In the model, consumers purchase tickets over two periods. In the first pe-

riod, a profit-maximizing monopolist primary market seller only sells a package

of tickets to all games (season tickets). In the second period, it only sells tickets

to individual games (single-game tickets). As in the data, the primary market

seller has rigid prices. It sets all prices at the start of the first period and does

not adjust them afterwards. Consumers resell or request refunds for tickets to

individual games in the second period.

When choosing whether to buy season tickets in the first period, forward-
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looking consumers consider the aftermarket policy and have rational expecta-

tions of future demand shocks. There are two demand shocks, both realized

between the two periods. First, consumers may receive idiosyncratic (inde-

pendently drawn) shocks for each game. Idiosyncratic shocks are like schedule

conflicts; they cause some consumers to have low values for their tickets and

motivate reallocation. Second, all consumers receive a purely aggregate shock,

like news about the team’s quality, that shifts the demand curve for tickets.

Because of the aggregate shock, the primary market seller’s prices are likely to

be suboptimal in the second period.

In the second period, consumers decide whether to participate in aftermar-

kets or buy tickets in the primary market. With refunds, consumers who bought

season tickets can return any number of their tickets to the primary seller for

a partial refund. With resale, they can resell any number of their tickets in

the resale market. Consumers without tickets decide whether to buy tickets in

the primary market or, when available, the resale market. To buy in the resale

market, consumers must incur frictions that are not present in the primary

market. Consumer decisions—and hence market outcomes like resale prices—

depend on realized shocks. The structural model is needed to predict the full

distribution of outcomes for circumstances not observed in the data, including

different aggregate shocks and alternative aftermarket designs like refunds.

The analysis relies on a novel combination of data sets. The centerpiece is

one season of primary and secondary market ticket sales records for a single

university, with the secondary market records provided by the largest resale

market, StubHub (Satariano, 2015). The records are informative about de-

mand, the resale market, and the interaction between the primary and resale

markets. I supplement the sales records with data on annual resale prices for

76 college football teams from 2011–2019 from SeatGeek, another online resale

market. The average prices are informative about annual shocks to aggregate

demand.

I estimate the model using the method of simulated moments, matching the

model’s aggregate predictions for quantities sold and resale prices to the data.

Some parameters are estimated outside of the model simulations. These may

be directly identified by the data, such as resale market fees, or estimated in

reduced-form models, such as preferences for each game.

The main results come from counterfactual experiments where a profit-

maximizing primary seller either allows resale or prohibits it and offers a par-
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tial refund. I find that resale performs better than refunds in states with large

aggregate shocks. When the realized shock is one standard deviation above

its mean, resale creates 10 percentage points more surplus in the second pe-

riod relative to refunds than it does for an average shock. When the shock

is one standard deviation below its mean, the corresponding advantage is five

percentage points. Resale copes better because resale prices are flexible, rising

$9.49 above average when the shock is one standard deviation above average

and falling $8.55 when it is one standard deviation below. The difference in

performance relies on the fact that model outcomes vary with realized shocks.

However, refunds perform better for less extreme realizations, and integrat-

ing over the distribution of demand shocks establishes that refunds are more

efficient on average. I find that refunds raise total welfare by 0.7% without

changing consumer welfare. Moreover, the primary seller prefers refunds be-

cause they raise profit by 2.4%. The changes imply that the harms of inflexible

primary market pricing with refunds are outweighed by the elimination of resale

market frictions. The welfare changes are meaningful relative to the number of

tickets reallocated, 7.4% of all tickets sold with resale.

The analysis contributes to our understanding of aftermarkets and resale.

There is little work comparing reallocation mechanisms. This article measures

the performance of resale and refunds and ties it to resale frictions and aggre-

gate demand shocks. In particular, the finding that resale frictions are large is

important because it suggests integrated primary and resale markets—markets

where primary and resale tickets are shown and sold together, which have be-

come increasingly common—may enhance efficiency. The size of any benefits,

however, depends on the precise reason for resale frictions, which this article

cannot determine.

The comparison of resale to refunds also contributes to policy debates sur-

rounding resale. The most prominent example is that governments have histor-

ically restricted or banned resale (Squire Patton Boggs LLP, 2017), but some

now protect it (Va. Code §59.1-38.2). This article suggests that, at least in

settings without systematically underpriced tickets, resale does not need to be

protected if alternative methods of reallocation, like refund policies, are avail-

able.

Sports leagues’ resale policies have also proven contentious. The NFL was

sued for limiting resale on platforms other than Ticketmaster, its “official ticket

marketplace” (Egelko, 2015). One possible justification for a single, official
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resale market is that it may reduce resale frictions, which this article finds

are significant. However, this article does not study the potential benefits of

competition between resale markets, which official marketplaces may dampen.

The analysis also offers suggestive evidence on alternatives to resale when

there are rent-seeking brokers—a historic focus of the resale literature, as in

Bhave and Budish (2023), Leslie and Sorensen (2014), and Courty (2019). Al-

though underpricing and brokers are not a primary concern in this article,

the model includes underpricing and rationing in equilibrium after high de-

mand shocks. The results suggest that resale is significantly more efficient than

refunds in such cases because it reduces rationing. However, the prediction

is merely suggestive because costs associated with brokers, including waiting

costs and market power, are not modeled.

The model has several limitations. The data do not identify brokers and

so there are no brokers in the model. However, brokers are unlikely to be

prominent in the market because tickets are not systematically underpriced for

the university studied. A second limitation of the data is that ticket usage and

resale outside of the online resale market are not observed. As a result, the

model assumes that no one resells tickets to friends or coworkers and that all

tickets sold are used.

The model assumes that the resale market is static with a single clear-

ing price. The streamlined resale market is needed to compute a fulfilled-

expectations equilibrium where outcomes vary with a distribution of shocks,

but it is unable to capture dynamic pricing in the observed resale market. The

model also assumes that consumers have homoegenous preferences for games

and seat qualities, ruling out price discrimination based on seat quality and the

heterogeneity that allows multiproduct bundling. Finally, I am unable to prove

that equilibrium exists and is unique, although simulations reliably converge to

a single equilibrium.

Related Literature. This article contributes to several literatures, most directly

those on resale and demand uncertainty. For the literature on resale of per-

ishable goods, this article estimates how resale affects profit and welfare by

modeling both primary and resale markets. Leslie and Sorensen (2014) use a

similar model combining primary and resale markets to study whether resale in-

creases welfare in the market for concert tickets, but they do not consider profit

because tickets are systematically underpriced in their sample. Tickets in my

setting are not underpriced and so I study both profit and welfare. Sweeting
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(2012) studies dynamic pricing in the resale market for sports tickets. Lewis

et al. (2019) investigate the effect of resale on demand for season tickets in

professional baseball but do not model how resale of season tickets affects sales

of other tickets. The net effects of resale on buyers and primary market sellers

are a traditional focus of the theory literature on resale, including studies such

as Courty (2003) and Cui et al. (2014).

More broadly, this article relates to other studies of how to run aftermar-

kets for perishable goods. Two recent articles, Cui et al. (2014) and Cachon

and Feldman (2021), have compared resale and refunds in theory, but neither

conducts an empirical study or considers the effect of aggregate shocks.

Aftermarket design and resale have also been studied in the context of

durable goods. With durable goods, primary market sellers compete against

past vintages of their products, as in Chen et al. (2013). The durable goods

problem leads to alternative aftermarket designs, such as leasing, studied in

Hendel and Lizzeri (2002), and buybacks, studied in Hodgson (2023).

The current analysis also relates to studies of demand uncertainty in which

aggregate uncertainty affects firms’ strategic choices, such as Kalouptsidi (2014),

Jeon (2022), and Collard-Wexler (2013). This article differs by focusing on

strategies firms can use to cope with uncertainty.

The article relates to a significant literature on how to sell perishable goods.

The choice of sales mechanism is studied in Waisman (2021), who considers

whether sellers should use auctions or posted prices when reselling sports tick-

ets, and in Bhave and Budish (2023), who consider the differences between

auctions and posted prices for the very best concert tickets.

The most significant literature on selling perishable goods concerns dynamic

pricing. Recent empirical studies include Lazarev (2013) and Williams (2022),

who study dynamic pricing in airlines when there is demand uncertainty. Sweet-

ing (2012) uses data on resale of sports tickets to determine which classes of

theoretical models are most appropriate.

The primary seller’s need to commit to prices in this article relates to an-

other key issue in the dynamic pricing literature: whether the seller can commit

to a pricing mechanism. The choice leads to different equilibria in Board and

Skrzypacz (2016), where the seller can commit, and Dilmé and Li (2019), where

the seller cannot and resorts to “flash sales.”
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2 An Example

In this section, I present an example illustrating that either refunds or resale

can be most efficient, and that the key forces determining efficiency are demand

uncertainty and resale frictions. The example provides a basis for the empirical

model developed in Section 5, which has a similar structure. Numbered assump-

tions also apply to the empirical model (though they may be generalized), and

I note any assumptions that do not apply.

A primary market seller has K tickets to sell over two periods. As detailed

in Assumption 1, the primary seller has rigid prices.

Assumption 1. The primary market seller announces a menu of prices {p1, p2}
at the start of the first period and cannot adjust it afterwards. Primary market

tickets are sold at price pt in period t.

Each consumer i has value vi for a ticket in period two,

vi = (νi + V ) (1−Hi) . (1)

Values have three components: consumer-specific tastes for tickets νi, a

random variable V that affects all consumers’ values, and a Bernoulli random

variable Hi specific to consumer i. The realizations of the random variables are

learned between the two periods, so consumer i only knows the expected value

in the first period. Consumer values in the empirical model share the same

structure but have additional terms.

The random variables Hi and V capture two sources of demand uncer-

tainty. The first is strictly idiosyncratic and is described by the independently

drawn Bernoulli random variable Hi, which equals one with probability ψ. Id-

iosyncratic shocks give each consumer a chance of unexpectedly being unable

to attend the game—for example, if they have a schedule conflict—and make

their realized value zero. The shocks cause some consumers who purchase tick-

ets in the first period to reallocate in the second period. The second source of

demand uncertainty is an aggregate shock, described by the random variable V .

Aggregate shocks cause all consumers to have higher or lower values for tickets,

like if the team performs better or worse than expected. In the example, there

are two possible realizations of V : a high value VH and a low value VL. In the

empirical model, V has a continuous distribution.
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To simplify the example, I focus on the second period.1 Suppose that the

primary seller sells Q̄1 tickets in the first period with both resale and refunds.

Because of idiosyncratic shocks, ψQ̄1 of the tickets sold in the first period need

to be reallocated. Thus Q̄2 ≡ K − Q̄1 +ψQ̄1 tickets are available in the second

period with both aftermarket policies. With refunds, all tickets are sold in the

primary market, but with resale, ψQ̄1 would be available in the resale market.

Also suppose the primary seller sets its price p2 so that consumers exactly

demand the remaining Q̄2 tickets in the second period when the aggregate

shock V is realized as VH . As discussed later, the conclusions are similar if

p2 is optimal when V is realized as VL—the only requirement is that primary

market prices be suboptimal for some realization of demand.

Refunds. Suppose that the primary market seller prohibits resale and offers a

refund r.

Assumption 2. When the primary market seller offers a refund, it prohibits

all other ticket transfers. It selects a refund r at the same time that it selects

prices. Consumers who purchase tickets in the first period can return them in

exchange for r at the start of the second period, and any refunded tickets are

returned to the primary market seller’s inventory.

For simplicity, suppose that the refund r is low enough that the only con-

sumers who request refunds are the ψQ̄1 who received schedule conflicts.2 All

Q̄2 remaining tickets are available in the primary market at the pre-selected

price p2. I illustrate the second period in Figure 1.

The supply curve S for tickets is horizontal at p2 up to the number of tickets

in the primary seller’s inventory, Q̄2, and vertical afterwards.

The realized demand curve is either D(p;VH) or D(p;VL). (I suppress the

first argument in the rest of the section.) For demand D(VH), the price p2 is

optimal and allocates all tickets. But when demand is D(VL), only Q′2 < ψQ̄1

tickets are sold. The price rigidity thus creates deadweight loss in the low-

demand state. The deadweight loss region can be split into loss from tickets

sold in period one that were recovered through refunds (DWL1) and loss on

tickets unsold in period one (DWL2).

1The conclusions in this section hold in a two-period equilibrium with forward-looking consumers.
The empirical model features such an equilibrium.

2The assumption rules out the possibility that 0 < vi < r for some consumers with tickets. This
is possible if the realized V is low, and is permitted in the empirical model.
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Resale markets. When there is a resale market, the primary market seller does

not offer a refund. In the second period, consumers who bought in the first

period can resell their tickets at prices of their choice; other consumers decide

whether to purchase tickets in the primary and resale markets. I assume that

the resale market is competitive, leading to an equilibrium with a single clearing

price.

Assumption 3. Participants take the resale price as given. An auctioneer

announces a single resale price pr2 that clears the resale market.

Because of Assumption 3, the equilibrium resale price depends on realized

demand and can be written as pr2(V ). The market clearing assumption osten-

sibly makes resale efficient, but resale-specific frictions temper any advantages.

Specifically, consumers incur a friction of size s when purchasing in the resale

market, reflecting factors like browsing costs and distaste for resale. Because of

the friction, a consumer with value vi is only willing to pay vi − s in the resale

market. All consumers have the same friction s in this section, but frictions are

heterogeneous in the empirical model.

The second period with resale is illustrated in Figure 2. Because consumers

who bought early and received schedule conflicts are willing to accept any

positive price, the supply curve is horizontal at zero up to ψQ̄1. The supply

curve is then horizontal at p2 from ψQ̄1 to Q̄2, reflecting the primary seller’s

remaining inventory. The supply curve then slopes upward because consumers

with tickets and no schedule conflicts may be willing to resell at high prices.3

Because of resale frictions, consumers are willing to pay s less per ticket in

the resale market at all realizations of V . The shaded region of height s at the

bottom of the graph represents surplus lost to frictions in the resale market at

both demand states. Owing to the effect of frictions on values, the prices at

which supply and demand intersect overstate the resale price by s, as the axis

labels indicate.

When demand is D(VH), all tickets are sold. When demand is D(VL),

Q̄2 − ψQ̄1 tickets are not sold, but all ψQ̄1 tickets available for resale are sold

at price pr2(VL).

Comparison. Because of resale’s flexible prices, more tickets are sold in the

low-demand state D(VL), raising welfare by up to DWL1. But the gains are

3The final segment of the supply curve would be lower when demand is D(VL), but is not shown
for simplicity.
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tempered by losses to resale frictions incurred in both demand states. The

net change in total welfare with resale is Pr(V = VL)DWL1 minus Frictions.

(DWL2 is lost with both strategies when VL is realized because the primary

market price is p2 in both cases.)

The net effect thus depends on the degree of aggregate demand uncertainty

and the magnitude of resale frictions. Greater aggregate uncertainty, reflected

in the distribution of V , leads to larger expected losses with refunds from

mispricing in the primary market. In contrast, a larger friction s erodes the

welfare gains from resale. The goal of the empirical exercise is to compare the

two regions—DWL1 and Frictions—in a model that features aggregate demand

uncertainty, flexible resale prices, and resale frictions.

The ambiguity also applies to the primary market seller’s profit. Price

rigidities reduce profit with refunds, and frictions reduce the amount forward-

looking consumers will pay for tickets with resale.

The conclusions of the example would be the same if realized demand had

been unexpectedly high. If demand were higher than expected, there would

be excess demand and inefficient rationing with refunds. Resale would lessen

rationing, but would still incur frictions.

The empirical model includes an additional feature omitted from the exam-

ple: resale fees. Resale markets are run by third parties who charge a fee on

each transaction. The fee reduces the seller’s profit with resale. As a result, it

affects the profit-maximizing allocation in the first period—an effect not con-

sidered in this section because of the simplified first period—and the division

of surplus in the second period.

3 Data

The analysis relies on a novel combination of two data sets. The first consists

of ticket sales for a single university, covering both the primary and resale

markets. Ticket sales are informative about demand for tickets and the extent

of resale. The second consists of annual resale prices for football tickets at

many universities, which are informative about year-to-year demand changes

that reflect aggregate shocks to demand for each team.

Ticket Sales. The main data set includes primary and secondary market ticket

sales for a large U.S. university’s football team. The primary market records

include ticket sales for two seasons. Each record indicates the price paid, date
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of purchase, and seating zone. Seating zones are clusters of seats sharing one

price, which I use as a measurement of seat quality. The primary market records

also indicate whether the sale was part of a season ticket package or promotion.

StubHub provides resale transaction records for the same university. The

data do not include all resale because consumers also resell on competing sites.

However, StubHub is likely to account for most resale because it was the largest

resale platform at the time (Satariano (2015)). The university also requests that

consumers resell on StubHub as part of a sponsorship deal.

The resale data do not include transaction prices. (The StubHub data was

obtained through the university, and StubHub did not provide transaction-level

prices to the university.) To learn about transaction prices, I use daily records

of StubHub listings for the university’s football games, gathered using a web

scraper. The listing data only overlaps with the resale transaction data for the

season studied in this article. Each listing includes a listing ID, price, number

of tickets for sale, and location in the stadium (section and row).

The listing data scraped from StubHub do not directly reveal transactions,

so I infer transactions from changes in listings. For example, if the number of

tickets offered in a listing falls by two from one day to the next, then I assume

two tickets were purchased at the last observed price.

The procedure leads to false positives because some listings are removed but

not sold. I do not consider inferred transactions from the day of the game be-

cause many listings might be removed without a transaction. I correct for other

false positives in two ways. First, I remove implausibly expensive transactions.4

Second, the StubHub transaction data shows the true number of resale transac-

tions at the game-section-time level, and I assume that the lowest-price inferred

transactions are the true ones. The removed transactions are generally outliers,

either occurring earlier or containing more seats than typical transactions.

Annual Resale Prices. I gather average annual resale prices for 76 college

football teams from SeatGeek, another online resale market. The annual prices

end in 2019 and start as early as 2011, although start dates vary by team. The

SeatGeek data are informative about aggregate shocks. They show that the

average price of a resold ticket varies meaningfully from one year to the next,

reflecting changes due to shared factors like team performance.

The combination of data sets is novel. Although several studies have com-

bined primary and resale market ticket sales (e.g. Leslie and Sorensen (2014)

4Transactions with prices over 1.5 times the 75th percentile of prices for similar quality seats.

11



and Bhave and Budish (2023)), to my knowledge, this is the first to add data on

historic price fluctuations for similar events. The data on annual price variation

make it possible to study the effect of aggregate demand uncertainty.

4 Descriptive Evidence

In this section, I provide descriptive evidence about the market that informs

the empirical model.

Market Background. The university is a monopolist seller of its tickets in the

primary market. There are other universities within driving distance, but they

are not close substitutes because of local allegiances. In the season used in

the analysis, the university sells tickets to five home games.5 There are about

30,000 tickets available to the public for each game. (Other tickets are reserved

for groups like students, athletics boosters, and visiting team fans.)

Tickets are sold in two main phases. The first consists of season ticket sales

and takes place months before the season—80% of season tickets are bought at

least four months before the season starts. The second phase occurs close to the

game and consists of single-game ticket sales and resale. Single-game tickets do

not go on sale until the first game is about a month away. 77% of resale and

full-price single-game transactions occur after the season starts, and 50% occur

within two weeks of the game. The empirical model reflects the timing of the

market, with a first period in which season tickets are available and a second

period in which single-game tickets and resale tickets are available.

The stadium is divided into five seating zones, which I use to measure the

quality of each seat. Lower zones (e.g. zone 1) contain better seats, like those

close to the field and near the 50-yard line.

Tickets available to the public are sold in several forms: season ticket pack-

ages; mini plans, which are bundles of tickets to a subset of games; and single-

game tickets, including those sold at promotional rates. Of these, season ticket

packages are by far the most popular, accounting for 75% of tickets sold.

The empirical model considers only season ticket packages and single-game

tickets sold at full price to the public. Nonpublic tickets are excluded because

they are off limits to most buyers. Mini plans are excluded because sales are

5 An additional home game was scheduled but canceled. It is excluded from the data and so is
also excluded from the analysis. I assume that consumers would have made the same season ticket
purchases if that game had not been scheduled, and I use prorated season ticket prices in estimation.

12



negligible—they account for under 0.2% of tickets sold. Single-game sales at

promotional and group rates are excluded because they are not optimally priced

and may only be available to targeted groups, like veterans.6

The menu of primary market prices is shown in Table 1. Primary market

prices mainly vary by seat quality. Prices vary slightly across games, but never

by more than $10. Prices are not set so low that consumers anticipate sellouts,

as they do for popular concert tours. Primary market tickets sold out for only

one game in the season studied. In later seasons, the team performed better

and a majority of games sold out.

Season tickets cost $25–$35 less than buying separate tickets to each game.

Season ticket holders who are members of the university athletic club (which

is not required to buy season tickets) receive additional perks such as reserved

parking, access to a pregame tailgate, and the chance to visit practice. Varia-

tion in values for the perks is one reason consumers might have heterogeneous

preferences for season tickets. However, I do not model athletic club member-

ship because of a lack of data and because other sports at the university are

more popular, providing a reason to join unrelated to football.

Resale Markets. Resale is a notable feature of the market, with 5.98% of all

tickets sold to consumers resold on StubHub.7 The overall rate of resale is

higher because tickets resold on other resale markets are not observed. The

rate at which consumers resell tickets will be used to estimate the frequency of

schedule conflicts, captured in equation (1) as the probability ψ of activating

the idiosyncratic shock term Hi.

The data support the idea that resale prices are flexible, reflecting the fact

that resellers can adjust list prices at any time. Figure 3 demonstrates that

resale prices are flexible because they adjust to differ from face value. It shows

the distribution of face values and the distribution of the average fee-inclusive

resale price for each game-quality combination. The differences reflect changes

in demand, and the variation across games suggests that some games are more

valuable.

Additionally, evidence from outside the market confirms that news leads to

6Nearly 40% of promotional tickets in the season were given away for free, and 98% were sold for
half-price or less. Group tickets are discounted by over 40% on average. Promotions are not used
to cope with demand uncertainty because they are too steeply discounted and too targeted.

7The figure is meant to reflect resale by consumers and so should exclude any sales to brokers.
The primary market seller sells some tickets directly to brokers. I conservatively assume that all
such tickets are resold on StubHub and remove them from both the numerator and denominator.
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demand shocks and sharp changes in resale prices. For example, resale prices

for Inter Miami rose by a factor of nine after Lionel Messi joined the team

(De Avila, 2023).

The last important feature of resale markets is that they include fees and

frictions that are not present in the primary market. The evidence for frictions

is that consumers often buy tickets in the primary market when comparable

resale tickets are cheaper. For instance, the average resale ticket to the first

game is over $16 cheaper than the average primary market ticket, yet over

1,250 single-game tickets are sold in the primary market. There are several

possible explanations for the friction. Consumers might not like or trust the

resale market, they might find searching for tickets onerous, or they might be

unaware of resale tickets. Frictions are reflected in Section 2 through the term

s and are included in the empirical model.

StubHub charges a percent fee amounting to roughly 22% of the amount

paid by the buyer.8,9 The average combined fee is $10.71 on each ticket resold,

compared to an average resale price under $40.

Annual Price Changes. SeatGeek’s data on average annual resale prices for

many universities provide information about aggregate demand shocks. The

SeatGeek data provide observations on average resale prices pr2(V ) that can

be used to learn about the underlying distribution of shocks V . To do so,

normalize university u’s price in year y by its average across all seasons,

NormPriceuy = AvgResalePriceuy/

(
1

Yu

∑
y

AvgResalePriceuy

)
, (2)

where AvgResalePriceuy is observed in the SeatGeek data and Yu denotes the

number of years in the sample for university u. Figure 4 shows the distribution

of normalized prices for all teams after adjusting for time trends with a regres-

sion on year dummies. Year-to-year variation for each university is significant:

the distribution is approximately normal and has an estimated standard devia-

tion of .25, implying that there is a roughly one-third chance that prices in any

given season will be more than 25% away from the mean. Further, dispersion

8Resale prices in this article are fee-inclusive to reflect the amount paid by the buyer.
9StubHub’s fee structure is not public (StubHub, 2021). I use its typical fees, reported to be 15%

of the fee-exclusive price from buyers and 10% from resellers (Goldberg, 2019). For a fee-exclusive
price p, fees of .25p when the buyer pays 1.15p imply a fee of 22% of the fee-exclusive price.
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is not driven by a few outliers. The standard deviation of normalized prices is

greater than .2 for more than 70% of all universities.

The dramatic swings in resale prices likely reflect aggregate demand shocks,

such as changes in team performance that affect the common component of

values V . For instance, in Clemson’s lowest-priced season they lost two of their

first three games—as many as they lost in the entire previous season—and

prices were 30% lower than usual. In their highest-priced season they won the

national championship and prices were nearly 35% higher.

5 Model

To reflect the data and match the theoretical framework, the model should

feature advance purchases, resale frictions, aggregate demand shocks, and a

resale market with outcomes that depend on aggregate shocks.

Outline, Utility, and Shocks

Let i index consumers. There are j = 1, . . . , J games in the season and q =

1, . . . , Q seat qualities. There are two periods.

The Primary Market. Two assumptions describe the behavior of the monopolist

primary market seller.

Assumption 1′. At the start of the first period, the primary market seller

announces a menu of prices {pBq}Qq=1 for season tickets and {pjq}Qq=1 for single-

game tickets to each game j. Prices cannot be adjusted afterwards. Season

ticket prices are only available in the first period and single-game prices are

only available in the second.

Assumption 1′ has the same content as Assumption 1 in Section 2, but allows

different games and seat qualities. Price rigidities and the different phases of

primary market sales reflect the setting, as discussed in Section 4.

Assumption 4. A monopolist primary market seller maximizes profit, has

capacity Kq for each seat quality q = 1, . . . , Q, and has no marginal costs for

each ticket.

Assumptions 1′ and 4 define the monopolist’s problem and hence the supply

side of the market. There are no cost parameters, so the model does not ratio-

nalize observed prices in estimation—estimation only involves the demand side
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of the model. However, the assumption that the primary market seller maxi-

mizes profit matters for counterfactuals, where the primary seller sets different

prices for each aftermarket policy.

Consumer Preferences. There are N consumers who want at most one ticket to

each game. All consumers arrive in the first period, when they decide whether

to buy season tickets or wait until the next period. In the second period,

consumers who bought season tickets decide whether to resell tickets or attend

each game. Consumers without season tickets decide whether to purchase in

the primary market, secondary market, or not at all.

Consumer i’s utility for a ticket of quality q to game j is measured in dollars

(relative to an outside option normalized to zero) and has a similar form to

equation (1) in Section 2,

uijq(V,Hij) = max{ αj (νi + V + γq) (1−Hij) , 0 }. (3)

As before, the random variable Hij captures idiosyncratic shocks like sched-

ule conflicts and follows a Bernoulli distribution with success probability ψ.

Consumer i receives independent draws of Hij for each game and has no value

for the game when Hij equals one. The floor at zero reflects free disposal.

Similarly, the random variable V still acts as a common component of values

for all consumers and so allows aggregate shocks, like an injury to the team’s

star player. Unlike in Section 2, the distribution of V is continuous. There is a

single realization of V for the season.

Consumer i’s utility also depends on a consumer-specific taste parameter

νi and two new terms, a scalar αj specific to game j and a scalar γq specific

to seat quality q. The parameters αj and γq do not vary among consumers,

implying homogeneous preferences for games and seat qualities.

The effect of the parameters is most easily seen by looking at the terms in

equation (3). The term featuring νi can be thought of as consumer i’s base

utility for a game. It is higher for better seat qualities q and higher consumer

preferences for football games νi. The base utility is then multiplied by the

game-specific αj to explain why some games are more desirable.

Consumer heterogeneity in equation (3) is primarily vertical, ranking con-

sumers by their value of νi. The ordinal ranking of consumers is fixed un-

til idiosyncratic shocks Hij are realized, but the cardinal differences may be

stretched across games (through αj) or shifted by qualities and shocks (through
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V and γq). Heterogeneity in game and quality preferences is not essential to

the research question and would make computation more challenging.

Equation (3) does not have a traditional error term, so consumer i’s ex-

pected values are perfectly correlated across games j. The model includes

other features that create random variation in choices over the products in a

consumer’s choice set, such as season tickets and resale tickets.

The parameters νi and V require parametric distributions.

Assumption 5. The common value V follows a normal distribution, V ∼
N(0, σ2

V ).

Assumption 6. The consumer taste parameter νi follows an exponential dis-

tribution, νi ∼ Exp(λν).

Assumption 5 follows from the distribution of normalized prices in Figure

4. Assumption 6 is needed to limit the number of parameters.

Model Outline. The model outline is depicted in Figure 5. Consumer decisions

in period two are depicted for a single game j but occur for all games.

The rest of the section describes the choices detailed in Figure 5. Using

backward induction, I start in period two.

Period Two

At the start of period two, consumers know whether they bought season tickets

and learn the realizations of shocks: schedule conflicts Hij and the common

value V . Consumers with season tickets decide whether to resell or attend.

All other consumers decide whether to purchase tickets in the primary market,

resale market, or not at all.

The resale market operates as described in Assumption 3. Specifically, there

is a schedule of resale prices {prjq(V )}Qq=1 clearing the resale market for each

game j, all resale market participants act as price takers, and the resale price

varies with the realization of V and includes all fees paid by buyers. The

assumptions simplify the search for resale prices, which must be conducted for

each realization of V . The assumptions do not imply a perfectly competitive

market that maximizes welfare gains: features like resale frictions reflect the

data and reduce the efficiency of resale. The market-clearing price also implies

that no resellers have market power, which may be incorrect if there are large

brokers.
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Consider the supply side of the resale market for game j. Consumers who

bought season tickets resell if the proceeds exceed their utility from attending,

uijq(V,Hij) ≤ (1− τ)prjq(V ). (4)

The resale fee τ is a percentage of the resale price, matching the policies of

resale markets like StubHub. The condition implies that consumers who receive

an idiosyncratic shock are willing to resell at any positive price.

Consumers without season tickets decide whether and how to buy tickets to

game j. They have three choices: make no purchase and receive surplus zero

(noted as No Purch. Surplus ij), purchase in the primary market and receive

surplus PM Surplus ijq, or purchase in the resale market and receive surplus

SM Surplus ijq. The surplus terms are

No Purch. Surplus ij = 0, (5)

PM Surplus ijq(V,Hij) = uijq(V,Hij)− pjq, (6)

SM Surplus ijq(V,Hij , sij) = uijq(V,Hij)− prjq(V )− sij , (7)

where sij is a friction that affects the surplus from buying in the resale market.

The friction explains why consumers might purchase primary market tick-

ets when similar tickets are cheaper in the secondary market. I make several

assumptions about the friction for tractability.

Assumption 7. The frictions sij follow an exponential distribtion, sij ∼
Exp(λs), and are independently drawn for each individual and game. Con-

sumers know the distribution of frictions in the first period but do not learn

their realizations until the second.

For each game, each consumer without season tickets chooses the option

maximizing surplus among equations (5), (6), and (7). Together, the equations

determine demand for primary and resale market tickets in period two.

Consumers may not be able to choose their surplus-maximizing option if

an alternative sells out, which is plausible in states with a high value of V . In

such cases, I assume that tickets are rationed randomly.

Assumption 8. Tickets are rationed randomly when there is a stock-out. The

probability of receiving a primary market ticket of quality q to game j is σjq(V ).
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Period One

In period one, consumers decide whether to buy season tickets based on ex-

pected outcomes in period two. The model includes a decision rule reflecting

the ability to resell in the second period, which is modified in counterfactuals

with other aftermarket policies.

Consumers with season tickets ultimately receive the maximum of their

value for attending game j and the after-fee resale price. Consumer i’s surplus

from season tickets of quality q is

ST Surplus iq =
∑
j

EV,Hij

(
max

{
uijq(V,Hij),

(1− τ)prjq(V )
})

+ δi − pBq.
(8)

Surplus depends on the price of season tickets and an additional parameter

δi, which captures heterogeneity in consumer values for season tickets. Het-

erogeneity could come from the effects of attending many games or perks for

season ticket holders in the university’s athletics club. Consumers sharing the

same νi could make different season ticket decisions because of variation in δi.

Assumption 9 limits the season ticket preferences δi to two values, providing

a parsimonious way to describe consumer heterogeneity.

Assumption 9. The parameter δi satisfies δi ∈ {δL, δH}, where δL < δH .

Values of δi are independently drawn. A fraction ζ of consumers have δi = δH ,

implying Pr(δi = δH) = ζ.

The parameters δH and δL may not be point identified. If no consumers

of type L want to buy season tickets at some value of δL, they also would not

buy season tickets at any lower value of δL. As discussed in Section 6, δL is

partially identified in the estimated equilibrium.

The surplus from waiting until period two requires an expectation for each

game j’s surplus. Consumer i’s set of alternatives for game j is

Cij(V,Hij , sij) = {0, {SM Surplus ijq(V,Hij , sij)}Qq=1,

{PM Surplus ijq(V,Hij)}Qq=1}.
(9)

A consumer’s surplus from waiting, WaitSurplus i, is the expected value of

equation (9) after accounting for rationing.10 The consumer’s choice set in

10Complete expressions can be found in the web appendix.
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period one is thus

Ci,ST =
{

WaitSurplus i, {ST Surplus iq}
Q
q=1

}
. (10)

Each consumer selects the maximizer of equation (10). If there is a stock

out, tickets are again rationed randomly.

Equilibrium

I search for a fulfilled-expectations equilibrium. The primary market seller

anticipates consumer demand and selects profit-maximizing prices {pBq} and

{pjq}. (Equivalently, the primary market seller maximizes revenue because

the marginal cost of a ticket is zero.) Consumers know the equilibrium resale

price functions {prjq(V )} and primary market purchase probabilities {σjq(V )}.
Consumers make optimal choices in the first period given expectations for resale

prices and probabilities, and their expectations are realized in the second period

when they make optimal purchase choices.

Although I am unable to prove that an equilibrium exists,11 model simula-

tions reliably converge. Simulations do not suggest there are multiple equilibria.

The search for equilibrium is computationally demanding, requiring re-

peated iteration to find the fixed point in resale price and primary market

rationing functions. Iteration is time-consuming because there are 2J such

functions, one of each type for each game. I discretize the distributions of

values νi and common values V . The standard for convergence is that resale

prices are within $0.01 between iterations for any realization of V , and the

mean primary market purchase probability for each quality is within one per-

centage point. It takes over 20 minutes to converge for the optimal demand-side

parameters described in Section 6.

6 Estimation and Results

Estimation focuses on the demand side of the model because there are no

supply-side parameters to estimate.

11The challenge in applying familiar fixed-point theorems is that the domain and codomain may
not be compact. When few season tickets are sold, resale prices could be arbitrarily high. Further,
the arguments to the function whose fixed point we seek are functions (prjq(V ) and σjq(V )).
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Kq, τ , and ψ. These parameters are identified directly from the data. I use the

university’s designations for seating zones q and take Kq to be the number of

seats in zone q. The fee τ is the percentage of the fee-inclusive price paid by

the buyer, calculated directly from StubHub’s policies.

The probability ψ of receiving an idiosyncratic shock (and having Hij equal

one) is identified by the frequency of resale. In the model, observed resale is

explained by idiosyncratic shocks in equilibrium, so the parameter ψ equals

the ratio of tickets resold by consumers to all tickets sold. However, the true

number of tickets resold is unknown because some consumers resell on other

platforms, which are not observed. I conservatively assume that StubHub is

75% of the resale market. Leslie and Sorensen (2014) assume a 50% share for

StubHub and eBay and Satariano (2015) reports that StubHub has roughly

half of the ticket resale market.

αj and γq. The parameters αj and γq affect consumer values and hence resale

prices. They are recovered from a reduced-form model of resale transaction

prices. The price of resale listing k may vary because of characteristics Xk that

are not otherwise modeled, such as the number of tickets in the transaction and

the number of days until the game.

Assumption 10. The resale price prjqk of transaction k follows

prjqk = αj(γq +Xkβ) + εjqk. (11)

Equation (11) is similar to the expression for consumer values in equation

(3), but also allows the characteristics of listing k to affect resale prices. The

key assumption is that changes in consumer values pass through completely to

resale prices. The counterfactual results in Figure 7 suggest that the assumption

holds in equilibrium. For more discussion, see the web appendix.

I estimate the model using nonlinear least squares and obtain standard

errors using the bootstrap.

The identifying variation for αj and γq comes from across-game and across-

quality variation in resale prices. More precisely, αj explains why similar tickets

for different games sell at different prices and γq explains why tickets to the

same game with different qualities sell at different prices.

σ2
V . The parameter σ2

V is the estimated variance of a normal fit to the set of

aggregate demand shocks {V }. The set of shocks is not directly observed and

must be constructed from the data.
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The basis for the set of shocks is observed variation in annual resale prices

for the teams in the SeatGeek data. I limit the SeatGeek data to similar teams,

defined as universities in similar athletic conferences that—like the university

studied—have not appeared in a national championship game or the College

Football Playoff in the past 20 years.

The starting point is the normalized resale prices described in equation (2).

The normalized prices give university u’s percent deviation in resale prices in

year y from university u’s average across all seasons. I use the normalized prices

to obtain a set of all observed shocks {Vuy}.

Assumption 11. The shock Vuy realized for university u in season y is

Vuy = p̄rū
(
NormPriceuy −NormPricey

)∑
j

wjαj

−1

. (12)

I obtain σ2
V by fitting a normal distribution to the set {Vuy}. Equation

(12) multiplies the normalized price (a percent deviation) by the studied uni-

versity ū’s mean season-adjusted resale price, p̄rū, to obtain an absolute price

shock. The equation also adjusts for time trends, through NormPricey, and the

weighted average value of αjV . The weights wj are taken as game j’s share of

all resale transactions. Because estimation is based on normalized prices, the

identifying variation comes from season-to-season changes within each univer-

sity.

The procedure makes three assumptions. First, the year-to-year variation

in the SeatGeek data is the sole source of variation in the common value. The

assumption could understate the variance because of game-specific shocks like

rain, but it could also exaggerate the variance if the year-to-year change is

predictable, like when a star player graduates. Second, shocks to the common

value pass through completely to resale prices. Like for the estimation of αj

and γq, Figure 7 suggests the assumption holds in equilibrium. And third, the

university faces the same shocks to normalized prices as other schools.

λs, λν , δH , δL, and ζ. The remaining parameters govern the distribution of

resale frictions (λs), the distribution of values (λν), preferences for season tickets

(δH and δL), and the fraction of consumers with each value of δi (ζ). They are

estimated using the method of simulated moments (MSM).

For each set of candidate parameters, I take observed primary market prices

as given and simulate the demand side of the model to predict 11 total moments:
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the number of season tickets sold, the average resale price for each of five

games, and the quantity of primary market tickets sold for each of five games.

MSM with aggregate moments is necessary because there are no closed-form

expressions for model predictions as a function of parameters, and because

many individual-level choices, such as to not purchase, are not observed.

An important detail for estimation is that the observed moments in the data

result from the single value of V realized in the season studied. I determine the

value of V realized in the data using equation (12), which compares observed to

average resale prices for the university. Then I estimate the model by comparing

model predictions for the realized value of V to the observed data.

Average resale prices in the data depend on the composition of seat qualities

resold. I weight model-predicted resale prices, which are at the game-quality

level, with the observed quality composition for resold tickets in the data to

ensure they are comparable.

The weight matrix has zeros off the diagonal and treats a 1% deviation in

each moment from its observed value equally. (The inverse covariance matrix

cannot be recovered because estimation moments come from separate datasets.)

In simulations, I discretize the distributions of νi and V . The grid of values

for νi ranges from 0 to 198 in increments of 0.1. The grid for V consists of 100

values, the evenly spaced quantiles of the distribution from 0.5% to 99.5%. The

extreme values of V in the grid are ±20.8. There are N = 200,000 consumers.

I calculate standard errors for the parameters estimated with MSM using

the bootstrap. I draw a sample of 50 estimation moments, then estimate op-

timal parameters for each set with the other parameters fixed at their point

estimates. The reported standard errors are derived from the set of estimated

optimal parameters and do not account for uncertainty over previously esti-

mated parameters.

To obtain the set of alternative estimation moments, I calculate each mo-

ment’s variance and sample from the implied distributions. For each game’s

average resale price, I construct the variance by sampling from the distribution

of transaction-level resale prices. For the number of season tickets and single-

game primary market tickets sold, I do not observe individual-level choices

and so cannot sample them. Instead, I assume that the underlying individ-

ual choices are based on Bernoulli draws and use the associated variance. For

details, see the web appendix.

Each parameter is identified by a combination of the estimation moments.
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Start with the distribution of resale frictions, parameterized by λs. In the

model, consumers purchase in the primary market if the primary market price

is less than the sum of the resale price and the resale friction. For instance, if the

resale price is $5 less than the primary market price, any consumer with sij > 5

prefers the primary market. The distribution of s determines the number of

consumers with sij > 5 and hence the number of tickets sold in the primary

market. It follows that λs is identified by primary market quantities and the

difference between primary and resale market prices.

Next, consider the distribution of values for college football relative to the

outside option, parameterized by λν . Higher values cause primary market quan-

tities and resale prices to rise, so λν is explained by all estimation moments:

season ticket quantities, primary market quantities, and resale prices.

Finally, consider the parameters related to season tickets, δH , δL, and ζ.

They relate to season ticket purchases. The parameters either directly raise

values for season tickets (δH and δL) or increase the fraction of consumers with

high values for season tickets (ζ). However, the quantity of season tickets sold

is not enough to identify all three parameters. Raising δH while lowering δL or

ζ could result in the same quantity of season tickets sold.

Resale prices and primary market quantities provide the additional informa-

tion needed to identify the season ticket parameters. By determining which con-

sumers buy season tickets, the season ticket parameters also determine which

consumers remain in the second period to form the demand curves for tickets

in the primary and resale markets. For example, suppose that δH were raised

and ζ lowered from their true values so that the number of season ticket buyers

stayed the same. The new high-type season ticket buyers would have lower val-

ues νi than before, so buyers in the second period would have higher values than

before. The change would affect resale prices and primary market quantities.

As mentioned in Section 5, the parameters δH and δL are partially identified

in general: a range of values produces the same allocation and model fit. Partial

identification does not impede the estimation procedure. It is sufficient to

find any parameters producing the best-fit allocation, then evaluate whether a

higher δL or lower δH would produce the same allocation when other parameters

are held fixed.

Results and Fit. Estimated parameters are in Tables 2 and 3. As noted in

Section 4, the resale fee is about 22% of the fee-inclusive price paid by the

buyer. The idiosyncratic shock rate suggests that 8% of buyers change their
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minds about attending the event between the first and second periods.

Consumer values vary widely across games and qualities. I normalize α1 = 1

and γ5 = 0. The most valuable game has attendance values 67% higher than

those for the baseline game; the least valuable game has values nearly 50%

lower. The best seats are worth almost $23 per ticket more than the worst

seats for game 1, with the difference scaled by the relevant αj for other games.

The standard deviation of the distribution of consumer values is $8.08. The

university thus faces consumer values for the baseline game that differ from the

mean by more than $8 about a third of the time.

In Table 3, the parameter defining the exponential distribution of resale

market frictions is 78.05. Hence the mean consumer has a friction of $78.05

associated with buying resale tickets, but there is substantial dispersion. Over

a quarter of consumers have draws of $25 or less. Nonetheless, the friction is

substantial and reduces the efficiency of the resale market.

The mean of the distribution of consumer types is 17.60, suggesting that the

average consumer would pay $17.60 for the worst seats to the baseline game in

an average season.

Consumers with high values for season tickets are estimated to represent

81% of the population and value season tickets $5.60 more than buying tickets

to each game separately.

The corresponding estimate for consumers with low values for season tickets

is partially identified. At the optimal parameters, the model predicts that no

consumers with low values for season tickets will buy a season ticket package.

Holding the other parameters constant, the model fit and allocation are the

same for any δL in (−∞,−203.06]. I report the upper bound of the set and base

standard errors on the upper bounds of the identified sets for the alternative

moments. The magnitude of δL ensures that some consumers with high values

demand tickets in the second period.

Partial identification is not consequential because the results of counterfac-

tual experiments do not vary within the identified set.

Table 4 and Figure 6 assess the model fit, where second-period model predic-

tions are for the value of V observed in the data. Observed and model-implied

resale prices are extremely close. The model captures the patterns in primary

market sales across games but does not fit them exactly. The looser fit is ex-

pected because there are no parameters specifically designed to fit game-specific

quantities. Finally, the model-implied number of season tickets purchased is
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within 10% of the true value.

Optimal prices from the resale counterfactual in Section 7 can be compared

to observed prices, which the model does not attempt to rationalize. Optimal

prices are about $9 higher than observed prices on average, and vary consider-

ably more across games.

7 Counterfactuals

The estimated model makes it possible to evaluate several counterfactual poli-

cies. In addition to the main experiment on partial refunds, I implement coun-

terfactuals to measure the effects of market features like primary market price

rigidities and resale fees.

The model predicts allocations, welfare, and profit for each realization of

the aggregate shock V . Reported counterfactual results are average outcomes

obtained by integrating out over the distribution of shocks.

Unlike the estimation procedure, the counterfactuals use the assumption

that the primary market seller maximizes its profit. In each counterfactual, I

solve for the primary market seller’s optimal menu of prices and evaluate welfare

at those prices. Solving for optimal prices is necessary because the aftermarket

policy affects the optimal price menu.

I place a mild restriction the primary market seller’s choice of prices to

simplify the search for profit-maximizing prices.

Assumption 12. The primary market seller chooses values pB and p and then

sets its menu of prices according to

pBq =

∑
j

αj

 (pB + (1− ψτ)γq) (13)

pjq = αj(p+ γq). (14)

Consumers who are indifferent between qualities choose the available quality

with the highest value of γq.

The purpose of Assumption 12 is to simplify the search for the primary

market seller’s optimal prices by reducing it to two dimensions. The prices pB

and p are reported in counterfactual results.
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Under the assumption, consumers are indifferent between all qualities and

choose the best available quality. The main consequence is that the primary

seller cannot intentionally create a shortage of one quality, which would push

high-value consumers to buy later or consider other ticket qualities.

The only source of across-game variation in the primary seller’s single-game

prices is αj . The assumption is reasonable because multiplication by αj is the

only difference between consumer values across games. Further, Assumption

12 is consistent with profit maximization in the second period if the primary

seller cannot commit: the shared αj term in consumer values and prices makes

a single base price p optimal for all games.

I obtain standard errors using the bootstrap. I sample model parameters

from the distribution obtained in the standard error calculations from Section

6 and run the counterfactual experiments for each set of parameters. Details

can be found in the web appendix.

Resale and Partial Refunds

The primary empirical goal of the article is to compare resale to a counterfactual

where the primary market seller offers partial refunds. With resale, the market

is as described in Section 5.

Partial Refunds. Partial refunds are as described in Assumption 2 in Section 2,

except that the primary market seller now sets a refund for each game, rj . As

before, resale is prohibited. Analogous to the resale decision rule in equation

(4), consumer i requests a refund when

uijq(V,Hij) ≤ rj . (15)

Without a resale market, the choice set for consumers without tickets in the

second period (formerly equation (9)) becomes

Cij(V,Hij) = {0, {PM Surplus ijq(V,Hij)}Qq=1}. (16)

Similarly, the value of buying season tickets changes because consumers can

request a refund but cannot resell. Season ticket surplus (formerly equation

(8)) becomes
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ST Surplus iq =
∑
j

EV,Hij

(
max

{
uijq(V,Hij), rj

})
+ δi − pBq. (17)

Additionally, any refunded tickets are added back to the primary market

seller’s inventory and can be sold at primary market prices in the second period.

Ideally, the primary market seller would choose the profit-maximizing menu

of partial refunds rj . The optimal menu cannot be too high, or else equation

(15) implies that many consumers would request refunds when the common

value V is low. But refunds cannot be too low, either, because consumers need

an incentive to return their tickets. Unfortunately, the data offer no guidance

on what refund a consumer would accept.

In the absence of relevant data, I set the refund as 30% of the per-game price

paid by season ticket buyers for zone 5 seats.12 The refund is high enough to

incentivize consumers to return their tickets, making the return rule in equation

(15) plausible. They are also low enough that the model predicts few redemp-

tions due to low values. Results in the web appendix show that the results are

robust to the refund policy.13

Results. Table 5 shows the average performance of each counterfactual experi-

ment over possible realizations of the common value V . Figure 7 includes plots

of second-period outcomes for resale and refunds for each value of V .

The average results in Table 5 show that total welfare is maximized with

partial refunds, besting resale by 0.7%, but consumer welfare is the same under

both policies.14 Profit is 2.4% higher with refunds. The magnitude of the

changes should be interpreted in the context of reallocation, which only affects

7.4% of all tickets sold in the resale counterfactual.

Because refunded tickets may not be resold, 3.8% more tickets are reallo-

cated with resale relative to the number of season tickets sold. (The number

of tickets reallocated is defined as the number resold for resale, and the mini-

mum of the number of refunds requested and primary market tickets sold for

12Following Assumption 12, rj = .3αjpB .
13Surprisingly, the robustness exercise shows that high refunds can increase the primary seller’s

profit by screening consumers. I limit discussion to the appendix because no ticket sellers employ
such a strategy.

14The differences are not large relative to the standard errors. However, in all alternative param-
eter sets used to calculate counterfactual results for standard errors, total welfare and profit are
higher with partial refunds.
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refunds.) The absolute number of tickets reallocated is higher with refunds

because more season tickets are sold.

The framework presented in Section 2 suggests that the change in total

welfare hinges on losses to resale frictions and the benefits of flexible resale

prices. Losses to frictions are present in all states and take the form of both

incurred frictions and frictions that are not incurred but lead to misallocation.

The benefits of flexibility are more pronounced at extreme realizations of the

common value V and are shown in Figure 7.

The top-left panel confirms that resale prices vary considerably depending

on the level of aggregate demand.15 Owing to frictions, they are sold at a

discount to primary market tickets in most states.

The effects of resale price variation are visible in the top-right and bottom-

left panels. The top-right panel shows the number of tickets used at an average

game. Although tickets sell out under both aftermarket policies when the team

is good enough, more tickets are sold with resale than with refunds when the

realization of V is low. When the realization of V is one standard deviation

below its mean, 220 more tickets are used with resale. The difference in tickets

sold, however, is small compared to the number of tickets sold in season ticket

packages.

The bottom-left panel shows surplus created in the second period under

each policy. When the shock V is one standard deviation above its mean, resale

produces welfare 21% higher than refunds, compared to an 11% advantage at

the mean shock. (Resale creates more surplus at the mean realization because

fewer tickets are sold in the first period with resale.) Resale also performs

better when V is one standard deviation below its mean, producing 16% more

welfare than refunds.

A central reason why resale performs better when V is high is that it causes

fewer tickets to be rationed when there is excess demand in the primary market.

The extent of rationing is shown in the bottom-right panel. As the shock to the

common value grows, demand overwhelms supply in the primary market. The

probability of receiving a requested primary market ticket falls to .59 (with

resale) and .66 (with refunds) when V is one standard deviation above its

average. It plummets below .2 at two standard deviations. Random rationing

causes consumers with relatively low values to receive the tickets; the resulting

15The plot also demonstrates that value changes due to shocks to V are approximately passed
through completely to resale prices, an assumption used to estimate αj , γq, and σ2

V .
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misallocation leads to the decline in second-period surplus for refunds in the

bottom-left panel. The effect is tempered for resale because of tickets available

to the highest bidder in the resale market.

Despite the greater number of tickets allocated and the more efficient out-

comes at high values of V , refunds are more efficient on average. The main

reasons are that (i) the extreme shocks to V do not occur often enough, and

(ii) resale frictions diminish the benefits of resale.

Refunds have a clear advantage in profit, earning 2.4% more for the primary

seller than resale. Interestingly, the primary seller earns more with refunds

despite setting lower prices for season tickets and single-game tickets—even if

expected resale revenue is subtracted from prices with resale. The reason is that

it earns more from sales of single-game tickets, including by capturing some of

the fees and frictions lost to resale. In fact, the primary seller earns less on

season ticket sales than with refunds—despite selling more season tickets—but

makes up for it by increasing primary market revenue by 62%.

Benchmark Counterfactuals

I consider several other counterfactual experiments to provide benchmarks for

the performance of observed resale markets. The first two counterfactuals eval-

uate the effects of reallocation and primary market price rigidities. The second

set of counterfactuals evaluates the effects of resale frictions, which are impor-

tant to the performance of resale.

No Reallocation. I measure the overall benefits of reallocation by conducting a

counterfactual without it. To eliminate reallocation, I close the resale market, as

in the partial refunds counterfactual, and do not allow the primary market seller

to accept returns. Any ticket sold to a consumer who receives an idiosyncratic

shock goes to waste.

Flexible Prices. Many benefits of resale could be realized with refunds if pri-

mary market prices were flexible. In the flexible price counterfactual, the pri-

mary seller offers a partial refund and commits in the first period to season

ticket prices and a schedule of single-game prices pjq(V ) that varies with the

realization of V .

To reduce the number of choice variables, I assume that the primary seller

sets a base price p according to Assumption 12 and uses the schedule
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pjq(V ) = pjq + αjV. (18)

The price schedule is nearly optimal. The adjustment for the shock V in

equation (18) is essentially the same as the one the primary seller chooses in

simulations where it sets a profit-maximizing price in the second period after

observing V .

Resale Frictions and Fees. To quantify the importance of resale frictions to

the performance of resale, I conduct counterfactuals with resale markets but no

resale frictions (λs = 0) and neither resale frictions nor fees (λs = 0 and τ = 0).

Results. Results are in Table 6. The results of the counterfactual without

reallocation confirm that there are substantial benefits to both aftermarket

policies. Without reallocation, total welfare is 4.7% lower than with resale,

consumer surplus is 7% lower, and profit is 2.4% lower. The results reinforce

that primary market sellers can benefit from reallocation.

The results with flexible primary market prices suggest that a partial refund

scheme would easily be optimal if there were no price rigidities in the primary

market. Total welfare is 3% higher than in the main refund counterfactual,

consumer welfare is 2.5% higher, and profit is 3.3% higher. A notable difference

compared to the refund counterfactual with price rigidities is that fewer season

ticket packages are sold and single-game tickets are generally cheaper, yet tickets

sell out for all realizations of aggregate shocks. One reason for the difference is

that the primary market seller can charge consumers for their expected values

in the first period, but second-period outcomes are volatile when prices are

rigid. With flexible prices, the primary market seller has less incentive to shift

sales to the first period.

The rightmost columns measure the effect of resale frictions. Without resale

frictions, total welfare would be 0.9% higher than with refunds, and consumer

welfare would be unchanged.

Removing fees in addition to resale frictions does not cause the primary

market seller to change the allocation of tickets—the only effect is to trans-

fer surpus from the resale market operator to the primary market seller. The

primary market seller does so by raising its season ticket prices, charging con-

sumers for the resale revenue gained when the fee disappears. The change in

fees is enough to change the optimal strategy. The primary market seller earns

1.2% more profit with frictionless resale and no fees than with refunds, but
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1.5% less profit with fees. The effects of removing fees would be different in a

model with an intensive margin to resale.

Discussion. Although brokers are not expected to be important in the

empirical setting, the results shed some light on their effects. As in settings with

systematic underpricing and brokers, demand outstrips supply in the primary

market when the realized aggregate shock is high. The analogy is not perfect.

Underpricing is known at the start of the market in settings with intentional

resale and brokers. In contrast, underpricing is only known after shocks are

realized in this article and so the initial allocation is not affected. Moreover,

consumers cannot buy underpriced tickets to resell within the second period.

The results are still illustrative for a central question regarding brokers:

without brokers (or resale), how severe would misallocation be? Figure 7 sug-

gests that misallocation from primary market rationing is significant enough

that resale, and brokers, could be valuable. As aggregate shocks grow, the

welfare produced by resale increases, but misallocation from rationing causes

welfare to decline with refunds. Brokers may reduce rationing and thus raise

welfare in such cases. However, the model does not capture several harms of

brokers.

One potential harm is that brokers could have market power. Another is

that there are costs to acquiring tickets in settings where they are underpriced

in the primary market. The resulting costs—an important feature in Leslie and

Sorensen (2014)—reduce the benefits of brokers but cannot be measured in this

setting. If, contrary to expectations, brokers are important in the market, the

model would overstate the rate of idiosyncratic shocks and, if brokers extract

more surplus than casual resellers, would also overstate consumer surplus.

The comparison between resale and refunds may change if primary and

resale markets are sold in a single integrated market. The promise of integrated

resale is to reduce the significant frictions associated with resale. But there are

risks. An integrated reseller may acquire market power in the resale market

that lets it raise fees or gives it an incentive to distort the allocation of tickets.

The model is not able to predict the effects of integrated resale because the

change in frictions is unknown and there is no intensive margin to resale in the

model, which would affect the optimal resale fee.

The counterfactual results also inspire a practical concern: why are refunds

rare in ticket markets? After all, events like concerts have little demand un-

certainty, which removes the benefits of resale studied in this article. A likely
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reason is that restrictions on resale and ticket transfers are unpopular, leaving

unlucky consumers with expensive tickets they cannot use (see e.g. Pender

(2017)). Enacting a refund policy would also require the primary market seller

to consider market dynamics: refunding a ticket a week before the show is

more valuable than refunding it an hour before. The challenge may discourage

event organizers from abandoning familiar resale policies. Finally, although

the artists who set prices too low may not be trying to maximize welfare, the

results suggest that the advantages of refunds may be reduced when tickets are

underpriced.

8 Conclusion

When consumers receive stochastic demand shocks, the initial allocation of

goods can be suboptimal. Society can benefit from aftermarket policies that

cope with shocks, but it is unclear which policy is best. I show that the optimal

aftermarket policy depends on the relative importance of aggregate shocks and

resale frictions; I then estimate a structural model describing the salient shocks

and frictions in the market for college football tickets and evaluate each policy

in counterfactual experiments.

The results suggest that refunds are more efficient than the status quo of

resale. In counterfactual experiments, total welfare is 0.7% higher with refunds,

profit is 2.4% higher, and consumer welfare does not change. The differences

in welfare and profit are meaningful given that 7.4% of tickets are reallocated

in equilibrium.

However, the average performances of the policies mask important differ-

ences. Resale performs relatively better when there are more extreme aggregate

shocks, allocating more tickets when the shock is low and avoiding rationing

when the shock is high. Such conclusions are only possible in a model with

aggregate demand shocks.

The article has three core implications for our understanding of resale and

aftermarkets. First, the framework demonstrates that resale can be valuable in

markets with primary market rigidities, aggregate uncertainty, and low resale

frictions. The market for college football tickets includes both rigidities and

aggregate uncertainty, but resale frictions are significant enough for refunds to

be optimal. In similar markets without primary market rigidities, like airlines

and hotels, refunds are a natural choice.
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Second, the comparison between resale and refunds informs how to run after-

markets. The results imply that refund strategies can be superior in perishable

goods markets even when there is significant aggregate demand uncertainty. A

driver of the benefits is the removal of frictions associated with resale.

Third, the article provides empirical evidence on the effects of resale. Whether

primary market sellers of perishable goods profit from resale is ambiguous in

theory, and this article shows that primary sellers benefit in practice: resale

raises profit by 2.4% compared to not reallocating. The effects of not reallocat-

ing on welfare inform policy on ticket resale. Total and consumer welfare fall

significantly, by 4.7% and 7% compared to resale. Society would benefit from

a legal right to resell tickets in cases where the primary seller does not offer an

alternative method of reallocation.
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Figure 1: The second period of a market with refunds and uncertain demand.

Table 1: Primary market single-game and season ticket prices. Table excludes the
canceled game. Season ticket prices are prorated to reflect the cancellation.

Game Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
1 70 60 50 40 30
2 70 60 55 45 30
3 70 60 50 40 30
4 70 60 55 45 30
5 60 55 40 35 30
Season Tickets 315 270 216 179 125
Face Value Sum 340 295 250 205 150
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Figure 2: The second period of a market with resale and uncertain demand.
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Figure 3: Distributions of mean fee-inclusive per-game resale prices and face value.
Based on university policies and StubHub data.
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Figure 4: Distribution of resale prices normalized by sample university means, ad-
justed for yearly trends, and fitted normal distribution. Based on SeatGeek data.

Parameter Description Notation Estimate Std. Err.
Resale Fee (%) τ 0.22 -
Idiosyncratic Shock Rate ψ 0.08 -
Preference for Game 1 α1 1.00 -
Preference for Game 2 α2 1.67 (0.032)
Preference for Game 3 α3 1.01 (0.023)
Preference for Game 4 α4 1.60 (0.029)
Preference for Game 5 α5 0.56 (0.015)
Preference for Quality 1 γ1 21.95 (0.689)
Preference for Quality 2 γ2 9.90 (0.611)
Preference for Quality 3 γ3 4.37 (0.569)
Preference for Quality 4 γ4 -0.70 (0.619)
Preference for Quality 5 γ5 0.00 -
SD of Common Value σV 8.08 (0.293)

Table 2: Estimates for parameters that do not require model simulations. Standard
errors calculated using the bootstrap.

Table 3: Estimated parameters from the second stage.

Parameter Description Notation Estimate Standard Error
Mean Resale Friction λs 78.05 (0.68)
Mean Consumer Type λν 17.60 (0.03)
High-Type ST Benefits δH 5.60 (0.04)
Low-Type ST Benefits∗ δL -203.06 (1.67)
Pct. High-Type ST Benefits ζ 0.81 (0.004)
∗ Estimate and standards errors are for the upper bound of the identified set.
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Figure 5: Model timeline and outline for consumer arrivals and choices, where the
second period is shown for a single game j. Decisions are shown in blue.

Table 4: Observed and model-implied quantities of season tickets.

Moment Model-Implied Observed
Season Tickets Sold 24543 22471

Observed and Model-Implied Resale Prices
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Figure 6: Observed and model-implied resale prices and primary market quantities
for the realized value of V for each game.
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Resale Refunds
Total Welfare (mn) $10.11 $10.18

(0.12) (0.12)
Profit (mn) $7.17 $7.34

(0.09) (0.09)
Consumer Welfare (mn) $2.84 $2.84

(0.04) (0.04)
Resale Fees (mn) $0.10 $0.00

(0.00) (0.00)
Tickets Resold or Refunded (1000) 10.28 10.78
Reallocated Tickets (1000) 10.28 10.35
Season Ticket Buyers (1000) 25.83 27.03
Season Ticket Base Price $31.82 $30.71
Single Game Base Price $42.22 $40.98

Table 5: Average counterfactual results across realizations of V for resale and refunds.
Standard errors calculated using the bootstrap and shown in parentheses.

Resale Flex. Prices No Reall. λs = 0 λs = τ = 0
Total Welfare (mn) $10.11 $10.49 $9.64 $10.27 $10.27

(0.12) (0.13) (0.12) (0.22) (0.20)
Profit (mn) $7.17 $7.58 $7.00 $7.23 $7.43

(0.09) (0.09) (0.09) (0.13) (0.13)
Consumer Welfare (mn) $2.84 $2.91 $2.64 $2.84 $2.84

(0.04) (0.04) (0.04) (0.09) (0.08)
Resale Fees (mn) $0.10 $0.00 $0.00 $0.20 $0.00

(0.00) (0.00) (0.00) (0.01) (0.00)
Season Ticket Buyers (1000) 25.83 26.42 24.96 27.18 27.18
Season Ticket Base Price $31.82 $31.17 $31.22 $33.00 $37.15
Single Game Base Price $42.22 $37.40 $41.47 $41.08 $41.08

Table 6: Average counterfactual results across realizations of V for experiments with
flexible prices, no reallocation, and no resale frictions. Standard errors calulated using
the bootstrap and shown in parentheses.
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Figure 7: Market outcomes as the common value V varies.
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