
Notes on Dynamic Screening and Reputation Games

February 22, 2017

The purpose of these notes is to give a big-picture overview of lecture 21, on dynamic screening
and commitment, and lecture 22, on incomplete information and reputation. It’s easy to get lost
in the details of the lectures, so these notes try to refocus on the most important logic and the
structure of the problems.

Dynamic Screening

In the dynamic screening game, a seller (with value 0) has two periods to sell an item to a single
buyer. The buyer’s value is either vH , with probability λ, or vL, with probability 1− λ. The seller
sets a single price in each period. If the item is purchased in the second period, then payoffs are
discounted by δ. There are three strategies:

• Caving: p1 = vL. Both types of buyers purchase in period 1.

• Bargaining: p1 = (1− δ)vH + δvL, p2 = vL. Under these prices, high-type buyers receive the
same payoff in both periods. Low-type buyers are willing to buy in the second.

• Stonewalling: p1 = p2 = vH .

Intuitively, caving is preferred to bargaining and stonewalling for low values of λ. If the proba-
bility that the buyer is a high type is small, then it makes sense to get revenue from low types as
soon as possible.

Define the critical belief λ∗ = vL
vH

. λ∗ is the probability of a high type that makes the seller
indifferent between caving and bargaining, following from the payoffs

vL︸︷︷︸
Caving revenue

= λ∗ ((1− δ)vH + δvL) + (1− λ∗)δvL︸ ︷︷ ︸
Bargaining revenue

.

Then the seller’s strategy is
λ < λ∗ Cave

λ = λ∗ Indifferent between caving and bargaining

λ > λ∗ Bargain or stonewall

The lecture notes do not directly compare stonewalling with caving, so note that if λ < λ∗,
caving is strictly better than stonewalling. Even if the high type always purchased at p1 = vH
under stonewalling, revenue would still be vHλ < vHλ

∗ = vL.
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Also note that the seller will not stonewall at λ∗. When the seller stonewalls, the high type
mixes between buying in the first and second periods (as explained in the next section). The crucial
point is that for λ = λ∗, the high type always waits to buy until the second period (by the definition
of α∗ in the notes), so the seller only receives δvHλ

∗ = δvL < vL. The seller would rather cave or
bargain.

Stonewalling

Assume that λ > λ∗. The logic for caving and bargaining are familiar, so I focus on stonewalling.
The key behavior in stonewalling is that the high-type buyer, vH , must mix.

To see why, suppose that vH does not mix and that p1 is strictly between the bargaining price
and vH , p1 ∈ (p∗1, vH). (For now, ignore that p1 = vH under stonewalling.) Neither of vH ’s pure
strategies are a PBE:

• If vH always buys in period 1, then the seller believes all buyers in period 2 are low types,
µ(vL | Reject at 1) = 1, and sets p2 = vL. This is not a PBE because vH has a profitable
deviation: since p1 > p∗1, vH would rather deviate to reject in period 1, be recognized as vL
in period 2, and get δvL > vH − p1.

• If vH never buys in period 1, then the seller believes µ(vH |Period 2) = λ > λ∗, making
p2 = vH optimal. This is not a PBE because vH could profitably deviate to accept in period
1 and get surplus vH − p1 > 0.

Since neither pure strategy is a PBE, vH must mix. There is one last point to this logic: if
vH is willing to mix, then his payoffs in both periods must be the same. For vL < p1 < vH , this
requires that the seller mix between vL and vH in period 2. If the seller does not mix, then vH
could profitably deviate to a pure strategy.

In the end, we only consider the stonewalling equilibrium with p1 = p2 = vH , so the seller does
not mix. When p1 = vH , our explanation for never buying does not apply, but Curt’s notes suggest
that it still is not a PBE because of an “open set problem.” I am not sure what he means by this,
but the result is: vH must mix in the stonewalling equilibrium.

The seller decides whether to stonewall or bargain based on which gives the higher payout,
which reduces to a condition on δ.

Reputation Games

We’ve seen a handful of reputation games: an incumbent firm against entrants, rational and possibly
irrational players in centipede, repeated ultimatum games, etc. I’ll use the incumbent/entrant game
as an example.

Consider an incumbent, I, who is believed to be tough (rational, cooperative, etc.) at time t
with probability µt. Each entrant Et has two options at t: enter, e, or not, n. If Et enters, I can
fight, f , or accommodate, a. A tough I prefers to fight if Et enters, but a weak I does not want to
fight in a one-shot game.

In a general setup, Et decides whether to do something that a weak I does not want, and a
weak I must decide whether to take an immediate loss (i.e. play f) to deter future entrants from
taking that action. Once I accommodates, he is known to be the weak type, and all future entrants
will play e.
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The critical belief µ∗t is the probability of I being tough such that Et is indifferent between
entering and staying out at t,

uE(e, a)(1− Pr(f |µ∗t , t)) + uE(e, f) Pr(f |µ∗t , t)︸ ︷︷ ︸
E plays e

= uE(n)︸ ︷︷ ︸
E plays n

. (1)

There is one subtle point here: the probability of fighting is different from the belief that I is
the strong type. In general, at t,

Pr(f |µ∗t , t) = Pr(Strong |µ∗t )︸ ︷︷ ︸
µ∗t

+ Pr(Weak |µ∗t )︸ ︷︷ ︸
1−µ∗t

Pr(f | Weak, t∗). (2)

The reasoning is: for t < T , a weak I might fight with some probability to deter future entry.
The weak I’s willingness to do so depends on T − t.

Time T

We start reputation games at time T because, by unravelling, Pr(f | Weak, T ) = 0 (there is no
future behavior to affect, so I plays a static best-response). Using µT = Pr(f), equation (1) gives
us the critical belief µ∗T .

Then, E plays f if and only if µT < µ∗T . A weak I does not fight if E enters.

Bayes’ Rule, Briefly

The use of Bayes’ rule to find µt+1 from µt and strategies is initially counterintuitive. It’s easiest to
understand as a counting argument: at t+ 1, what fraction of incumbents who have always fought
are tough types? Tough types always fight, but some weak types also fight. The probability is

µt+1 =
Num. Strong Types

(Num. Strong Types) + (Num. Weak Types) Pr(f | Weak, t)
=

µt
µt + (1− µt)σt(f)

where σt(f) is the probability that a weak I fights at t. Instead of the counting argument, we get
the same result from applying Bayes’ rule:

Pr(Tough |f) =
Pr(f | Tough) Pr(Tough)

Pr(f | Tough) Pr(Tough) + Pr(f | Weak) Pr(Weak)

=
(1) Pr(Tough)

(1) Pr(Tough) + σt(f) Pr(Weak)

=
µt

µt + σt(f)(1− µt)

Time T − 1

At T − 1, I’s behavior can affect whether ET plays e at T . Assume that ET−1 plays e at T − 1 and
consider our familiar cases.
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µT−1 > µ∗T : This should feel easy. By Bayes’ rule, µT = µT−1 if I fights, so I fights and ET
plays n. (This requires I to be willing to fight today for a certain gain tomorrow, but this should
always be true in these problems.)

µT−1 < µ∗T : This is the hard case requiring both players to mix simultaneously. Why is
simultaneous mixing necessary? Consider I’s pure strategies.

• If I plays f with certainty, then µT = µT−1 < µ∗T and ET will play e. Since I secured no
future benefit by fighting, he would rather deviate and play a at T − 1.

• If I plays a with certainty, then µT = 1 > µ∗T . But then a weak I would deviate to f at T −1
because ET would believe he is strong and play n at T .

Then I must mix, but I is only willing to mix if f and a have the same expected payoff at
T − 1. Therefore, to support I’s mixing, ET−1 must also mix. This is why simultaneous mixing is
necessary.

In a bit more depth, I must mix so that µT = µ∗T (or else, as in the pure strategy case, ET
plays a pure strategy and I wants to deviate). From Bayes’ rule, this requires that the weak I play
σT−1(f) such that

µ∗T =
µT−1

µT−1 + (1− µT−1)σT−1(f)

To support I’s mixing, E mixes with probability σT−1(e) such that

σT−1(e)uI(e, f) + (1− σT−1(e))uI(n)︸ ︷︷ ︸
T−1 payoff if f

+uI(n, f)︸ ︷︷ ︸
T payoff

= σT−1(e)uI(e, a) + (1− σT−1(e))uI(n, a)︸ ︷︷ ︸
T−1 payoff if a

+uI(f, a)︸ ︷︷ ︸
T payoff

(Note that, when making I indifferent, we need to consider future payoffs.) Finally, using I’s
mixing strategy, we can calculate the total probability of fighting, Pr(f | µT−1, T − 1), and use it
to calculate µ∗T−1. Once we have the critical belief µ∗T−1, we can consider µT−2 < µ∗T−1 and repeat.

The Algorithm

The discussion suggests a general algorithm for solving reputation game problems.

1. At T , ET and I play a one-shot game. ET ’s action is determined by whether µT < µ∗T .

2. At T − 1, if µT−1 > µ∗T and ET−1 enters, then I fights, µT = µT−1 > µ∗T , and ET does not
enter, n.

3. At T − 1, if µT−1 < µ∗T , I mixes so that µT = µ∗T . ET−1 mixes over f and a to make I’s
payoffs for the rest of the game equal.

4. Under I’s mixing strategy σT−1(f), calculate the total probability that I fights (considering
both strong and weak I) and use it to solve for µ∗T−1.

5. Using µ∗T−1, repeat for T − 2, . . . , taking care to adjust for changes in continuation payoffs.

6. Find a pattern in the formula for µ∗t and generalize.
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